5 research outputs found

    Cryptococcus neoformans Intracellular Proliferation and Capsule Size Determines Early Macrophage Control of Infection.

    Get PDF
    Cryptococcus neoformans is a significant fungal pathogen of immunocompromised patients. Many questions remain regarding the function of macrophages in normal clearance of cryptococcal infection and the defects present in uncontrolled cryptococcosis. Two current limitations are: 1) The difficulties in interpreting studies using isolated macrophages in the context of the progression of infection, and 2) The use of high resolution imaging in understanding immune cell behavior during animal infection. Here we describe a high-content imaging method in a zebrafish model of cryptococcosis that permits the detailed analysis of macrophage interactions with C. neoformans during infection. Using this approach we demonstrate that, while macrophages are critical for control of C. neoformans, a failure of macrophage response is not the limiting defect in fatal infections. We find phagocytosis is restrained very early in infection and that increases in cryptococcal number are driven by intracellular proliferation. We show that macrophages preferentially phagocytose cryptococci with smaller polysaccharide capsules and that capsule size is greatly increased over twenty-four hours of infection, a change that is sufficient to severely limit further phagocytosis. Thus, high-content imaging of cryptococcal infection in vivo demonstrates how very early interactions between macrophages and cryptococci are critical in the outcome of cryptococcosis

    Dectin-1 is required for β-glucan recognition and control of fungal infection

    No full text
    β-Glucan is one of the most abundant polysaccharides in fungal pathogens, yet its importance in antifungal immunity is unclear. Here we show that deficiency of dectin-1, the myeloid receptor for β-glucan, rendered mice susceptible to infection with Candida albicans. Dectin-1-deficient leukocytes demonstrated significantly impaired responses to fungi even in the presence of opsonins. Impaired leukocyte responses were manifested in vivo by reduced inflammatory cell recruitment after fungal infection, resulting in substantially increased fungal burdens and enhanced fungal dissemination. Our results establish a fundamental function for β-glucan recognition by dectin-1 in antifungal immunity and demonstrate a signaling non–Toll-like pattern-recognition receptor required for the induction of protective immune responses

    TNF\u3b1 Levels and Macrophages Expression Reflect an Inflammatory Potential of Trigeminal Ganglia in a Mouse Model of Familial Hemiplegic Migraine

    Get PDF
    Latent changes in trigeminal ganglion structure and function resembling inflammatory conditions may predispose to acute attacks of migraine pain. Here, we investigated whether, in trigeminal sensory ganglia, cytokines such as TNF\u3b1 might contribute to a local inflammatory phenotype of a transgenic knock-in (KI) mouse model of familial hemiplegic migraine type-1 (FHM-1). To this end, macrophage occurrence and cytokine expression in trigeminal ganglia were compared between wild type (WT) and R192Q mutant CaV2.1 Ca2+ channel (R192Q KI) mice, a genetic model of FHM-1. Cellular and molecular characterization was performed using a combination of confocal immunohistochemistry and cytokine assays. With respect to WT, R192Q KI trigeminal ganglia were enriched in activated macrophages as suggested by their morphology and immunoreactivity to the markers Iba1, CD11b, and ED1. R192Q KI trigeminal ganglia constitutively expressed higher mRNA levels of IL1\u3b2, IL6, IL10 and TNF\u3b1 cytokines and the MCP-1 chemokine. Consistent with the report that TNF\u3b1 is a major factor to sensitize trigeminal ganglia, we observed that, following an inflammatory reaction evoked by LPS injection, TNF\u3b1 expression and macrophage occurrence were significantly higher in R192Q KI ganglia with respect to WT ganglia. Our data suggest that, in KI trigeminal ganglia, the complex cellular and molecular environment could support a new tissue phenotype compatible with a neuroinflammatory profile. We propose that, in FHM patients, this condition might contribute to trigeminal pain pathophysiology through release of soluble mediators, including TNF\u3b1, that may modulate the crosstalk between sensory neurons and resident glia, underlying the process of neuronal sensitisation. \ua9 2013 Franceschini et al
    corecore